传感技术不仅是仪器仪表实现检测的基础,也是仪器仪表实现控制的基础。这不仅因为控制必须以检测输入的信息为基础,并且是由于控制达到的精度和状态,必需感知,否则不明确控制效果的控制仍然是盲目的控制。
广义而言传感技术必须感知三方面的信息,它们是客观世界的状态和信息,被测控系统的状态和信息以及操作人员需了解的状态信息和操控指示。
随着仪器仪表和测控系统应用领域的日益扩大,可靠性技术特别是在一些军事、航空航天、电力、核工业设施,大型工程和工业生产中起到提高战斗力和维护正常工作的重要作用。这些部门一旦出现故障,将导致灾难性的后果。因此装置的可靠性、性、可维性、特别是包括受测控系统在内的整个系统的可靠性、性、可维性显得特别重要。
仪器仪表和测控系统的可靠性技术除了测控装置和测控系统自身的可靠性技术外,同时还要包括受测控装置和系统出现故障时的故障处理技术。测控装置和系统可靠性包括故障的自诊断、自隔离技术,故障自修复技术,容错技术,可靠性设计技术,可靠性制造技术等。
伴随着计算机、通讯、软件和新材料、新技术等的快速发展与成熟,人工智能、在线测控成为可能,使仪器走向智能化、虚拟化、网络化。
数字仪器、智能仪器、个人计算机仪器、虚拟仪器和网络仪器代表了20世纪现代科学仪器发展的主流与方向。
十二五”期间工信部已把传感器及智能化仪器仪表摆到推动制造业转型升级的重要位置,在工信部相关资源中对传感器及智能化仪器仪表的研发及产业化予以支持。
数字化是智能仪器、个人仪器和虚拟仪器的基础,是计算机技术进入测量仪器的前提。广泛应用于电子数字计算机、数控技术、通讯设备、数字仪表等方面,诸如人类台电子数字计算机ENIAC,爱思达金相显微镜,体视显微镜,X光检查机等。