高压无功补偿
在变压器高压侧进行无功补偿,补偿的仅仅是高压网路的无功损耗。变压器高压侧电压一般为10KV、35KV、或110KV。高压无功补偿又分两种:一种是直接将补偿装置接于高压侧;另一种是通过补偿变压器接于高压侧。用相应电压等级的补偿装置(包括电力电容器、开关、电抗器、避雷器、保护等成套设备,下同),直接接入矿热炉变压器高压侧(补偿装置接在矿热炉变压器进线端),也可以直接在变电站中,单独或集中补偿。
但由于其接入点在高压侧,设备的功率因数并不能提高,故变压器的输出有功功率也不能增加,只能提高变压器前端即电网的功率因数。而且固定式补偿容易因负载或电网变化形成过补偿和欠补偿,达不到稳定补偿的效果。因而高压补偿*多只能达到不罚款的目的而不能产生明显的实质性的经济效益。
低压就地无功补偿
低压就地无功补偿方式为补偿装置连接在短网末端,低压就地补偿可有效提高低压侧的电压,降低无功电流从而降低视在功率,降低短网、线路和变压器损耗;并可相应增加变压器的有功功率输出。由于低压就地补偿装置安装在矿热炉短网末端,直接在负载末端提供了很大的无功电流,使功率因数的提高具有实质性的经济意义。
相对高压补偿而言,低压补偿的优势主要体现在以下几个方面:
提高变压器、大电流线路利用率,增加冶炼有效输入功率。
针对电弧冶炼而言,无功的产生主要是由电弧电流引起的,将补偿点移至短网,就地补偿短网的大量无功消耗,提高变压器的出力,增加冶炼有效输入功率。
改善三相的强、弱相状况。
由于三相短网布置不平衡,通过电流后产生的自感和互感都不相同,三相不同的电压降就导致了强、弱相现象的形成。从理论上来讲,炉料的熔化功率是与电极电压和料比电阻成函数关系的,可以表示为P=U2/R。从这一基本点出发,在三相短网与电极之间长度基本相等点,采取单相并联的方式进行无功补偿,综合调节各相补偿容量,使三相电极的有效工作电压趋于一致、平衡电极电压、均衡三相吃料,从而改善三相的强、弱相状并联史,在补偿后根据炉况调节冶炼档位和极心圆,使电极作业面积扩大,以达到增产、降耗的目的。
降低高次谐波值,减小变压器及网路附加损耗。
矿热炉是一种高能耗的电冶炼炉,具有电阻电弧炉的特性。电弧冶炼时会产生高次谐波,尤其以3、5、7、11次*为严重,如对此不加以限制和吸收,无论对设备还是补偿装置,都会产生不利的影响。因此在设备中,我们会根据冶炼的谐波状况将并联电容器设计成滤波回路。根据公式:
UN=LN(NXL-XC/N)→0
U—谐波电压;LN谐波电流;XL—电抗器感抗值;XC—电容器容抗值。为降低和吸收N次以上谐波,应使L—C自振频率小于N。由于是就地补偿,冶炼时产生的高次谐波能被低压无功补偿系统的L--C谐波回路吸收,而不再通过变压器和高压网络,从而有效降低高次谐波值,减小变压器及网路附加损耗。
有效提高功率因数。
矿热炉的无功消耗主要在变压器和短网上,实施低压无功补偿,不仅就地补偿了短网和变压器的损耗,还能补偿高压线路的损耗,因此,相比高压补偿而言,其功率因数的提高无论对电网还是用户都是有效的。
稳定系统的无功消耗。
稳定系统的无功消耗主要表现为短网电极端冶炼电压的降低,实施低压无功补偿后,电压提高百分比为:
DU=Q×XK/SN(%)
QN—补偿容量;SN—变压器容量;XK—变压器阻抗百分比。
同时,系统的电压变化和总无功量的变化是成正比的。针对矿热炉而言,冶炼负荷相对平稳,其变化主要体现在冶炼初期和出炉期。因此,在降低三相负荷不平衡的同时,考虑到负荷的变化范围,在补偿时予以容量上的变化控制,达到稳定负载端电压的目的,从而企业获取*大的经济效益。
经济效益技术指标
月均功率因数:提高到0.92以上,避免供电部门的调度罚款
增加设备的有功出力,产量提高
提高电炉末端电压、单位产品电耗降低
炉料燃烧更均匀,合金成份更稳定,产品上等品率大大提高
减少炉渣的沉淀,延长挖炉等检修的间隔时间
谐波电压、电流满足国际《电能质量公用电网谐波》GB/T14594-93的要求,为企业节电2-5%、增产5%以上
主要技术参数
额定电压:90V~460V;
基波频率:50HZ;
控制物理量:功率因数;无功功率;谐波电流等
无功补偿容量:2000KVAR~20000KVAR;
工作制:连续工作;
结构形式:箱式、柜式;
环境温度:户内型-10℃~+65℃;
相对湿度:日平均不大于95%,月平均不大于90%(户内);
投切方式:分组、分级、手动、远程、就地控制投切;
补偿方式:分组、分级、手动、远程、就地控制投切;
无爆炸性尘埃和导电性尘埃